www.idesign.net

IDesign

C# Coding Standard

Guidelines and Best Practices
Version 2.32

Author: Juval Lowy
www.lidesign.net

-1-

©2008 IDesign Inc. All rights reserved

January 2008

www.idesign.net January 2008

Table of Content

P ETACE. .. et 3
1. Naming Conventions and STYIE........cccciviieiviieie e 4
P O T 11 1o = - T 1ol 8
3 Project Settings and ProjeCt StrUCIUIEccviveveriire e sir s seese e 15
4 Framework SpPecific GUIEIINESc..ovvie i 19
4.1 DA ACCESS ... eveveeeieeresreiesie e se e sr ettt 19
4.2 ASP.NET and WeD SEIVICEScccieiirreiinrierinreee s 19
G I\ V1111 T =T Vo 1o USSR 20
4.4 SErTaliZATION. ..o 22
T = 11101 1] SRS 22
Lol U) Y USSR 23
4.7 SYStEM.TIANSACTIONS. .. .cuveiiieiieste ettt 24
4.8 ENEIPIISE SEIVICES ...eiuiiieiisieitesteseseereese e e sae s e ste e re e e e seeste st sresreaneeree e eneees 25
5 RESOUICES ...ttt ettt et e 26
-2-

©2008 IDesign Inc. All rights reserved

www.idesign.net

Preface

A comprehensive coding standard is essential for a successful product delivery. The
standard helps in enforcing best practices and avoiding pitfalls, and makes knowledge
dissemination across the team easier. Traditionally, coding standards are thick, laborious
documents, spanning hundreds of pages and detailing the rationale behind every
directive. While these are still better than no standard at all, such efforts are usually
indigestible by the average developer. In contrast, the C# coding standard presented here
is very thin on the “why” and very detailed on the “what” and the “how.” | believe that
while fully understanding every insight that goes into a particular programming decision
may require reading books and even years of experience, applying the standard should
not. When absorbing a new developer into your team, you should be able to simply point
him or her at the standard and say: "Read this first." Being able to comply with a good
standard should come before fully understanding and appreciating it—that should come
over time, with experience. The coding standard presented next captures best practices,
dos and don'ts, pitfalls, guidelines, and recommendations, as well as naming conventions
and styles, project settings and structure, and framework-specific guidelines. Since | first
published this standard for C# 1.1 in 2003, it has become the de-facto industry standard
for C# and .NET development.

Juval Lowy
January 2008

-3-

©2008 IDesign Inc. All rights reserved

January 2008

www.idesign.net

o N o U

10.

11.

. Naming Conventions and Style

Use Pascal casing for type and method names and constants:
public class someclass

{
const int DefaultSize = 100;

public void someMethod()

O
}

Use camel casing for local variable names and method arguments.
void MyMethod(int someNumber)

int number;

3

Prefix interface names with T
interface IMylnterface
{--}

Prefix private member variables with m_. Use Pascal casing for the rest of a member
variable name following the m_.

public class SomeClass

{

private int m_Number;

}

Suffix custom attribute classes with Attribute.

Suffix custom exception classes with Exception.

Name methods using verb-object pair, such as ShowDialog ().

Methods with return values should have a name describing the value returned, such

as GetObjectState ().

Use descriptive variable names.

a) Avoid single character variable names, such as i or t. Use index or temp
instead.

b) Avoid using Hungarian notation for public or protected members.

c) Do not abbreviate words (such as num instead of number).

Always use C# predefined types rather than the aliases in the Sy stem namespace.

For example:

object NOT Object
string NOT String
int NOT Int32

With generics, use capital letters for types. Reserve suffixing Type when dealing
with the .NET type Type.

//Correct:
public class LinkedList<K,T>

{---}
//Avoid:
public class LinkedList<KeyType,DataType>

{---}

-4-

©2008 IDesign Inc. All rights reserved

January 2008

www.idesign.net January 2008

12.
13.
14,
15.

16.

17.

18.
19.

20.

21.
22.
23.

24,

Use meaningful namespaces such as the product name or the company name.
Avoid fully qualified type names. Use the using statement instead.
Avoid putting a using statement inside a namespace.

Group all framework namespaces together and put custom or third-party namespaces
underneath.

using System;

using System.Collections.Generic;

using System.ComponentModel ;

using System.Data;

using MyCompany;

using MyControls;

Use delegate inference instead of explicit delegate instantiation.

delegate void SomeDelegate();

public void SomeMethod()

{---}

SomeDelegate someDelegate = SomeMethod;

Maintain strict indentation. Do not use tabs or nonstandard indentation, such as one
space. Recommended values are three or four spaces, and the value should be
uniform across.

Indent comments at the same level of indentation as the code you are documenting.

All comments should pass spell checking. Misspelled comments indicate sloppy
development.

All member variables should be declared at the top, with one line separating them
from the properties or methods.

public class MyClass

{

int m_Number;
string m_Name;

public void SomeMethod1()

b
public void SomeMethod2()

s

}

Declare a local variable as close as possible to its first use.
A file name should reflect the class it contains.

When using partial types and allocating a part per file, name each file after the
logical part that part plays. For example:

//1n MyClass.cs
public partial class MyClass

//1In MyClass.Designer.cs
public partial class MyClass

{---}
Always place an open curly brace ({) in a new line.

-5-

©2008 IDesign Inc. All rights reserved

www.idesign.net January 2008

25. With anonymous methods, mimic the code layout of a regular method, aligned with
the delegate declaration. (complies with placing an open curly brace in a new line):
delegate void SomeDelegate(string someString);

//Correct:
void InvokeMethod()

SomeDelegate someDelegate = delegate(string name)

MessageBox . Show(name) ;
3
someDelegate(**Juval™);

¥
//Avoid

void InvokeMethod()

SomeDelegate someDelegate = delegate(string name){MessageBox.Show(name);};
someDelegate(**Juval™);

}

26. Use empty parentheses on parameter-less anonymous methods. Omit the parentheses
only if the anonymous method could have been used on any delegate:

delegate void SomeDelegate();
//Correct
SomeDelegate someDelegatel = delegate()

MessageBox.Show(**Hel10™) ;

3
//Avoid
SomeDelegate someDelegatel = delegate

MessageBox.Show(**Hel10™") ;

}:

-6-

©2008 IDesign Inc. All rights reserved

www.idesign.net January 2008

217.

28.

With Lambda expressions, mimic the code layout of a regular method, aligned with
the delegate declaration. Omit the variable type and rely on type inference,
yet use parentheses:

delegate void SomeDelegate(string someString);

SomeDelegate someDelegate = (name)=>

{

Trace._WriteLine(name);
MessageBox . Show(name) ;

}:
Only use in-line Lambda expressions when they contain a single simple statement.
Avoid multiple statements that require a curly brace or a return statement with in-
line expressions. Omit parentheses:

delegate void SomeDelegate(string someString);

void MyMethod(SomeDelegate someDelegate)
{---}

//Correct:
MyMethod(hame=>MessageBox . Show(nhame)) ;

//Avoid
MyMethod((name)=>{Trace .WriteLine(name) ;MessageBox.Show(name);});

-7-

©2008 IDesign Inc. All rights reserved

www.idesign.net January 2008

N

10.

11.

12.

13.

14,

15.
16.

Coding Practices

Avoid putting multiple classes in a single file.

A single file should contribute types to only a single namespace. Avoid having
multiple namespaces in the same file.

Avoid files with more than 500 lines (excluding machine-generated code).
Avoid methods with more than 200 lines.

Avoid methods with more than 5 arguments. Use structures for passing multiple
arguments.

Lines should not exceed 120 characters.
Do not manually edit any machine-generated code.

a) If modifying machine generated code, modify the format and style to match this
coding standard.

b) Use partial classes whenever possible to factor out the maintained portions.
Avoid comments that explain the obvious. Code should be self-explanatory. Good
code with readable variable and method names should not require comments.
Document only operational assumptions, algorithm insights and so on.

Avoid method-level documentation.

a) Use extensive external documentation for APl documentation.

b) Use method-level comments only as tool tips for other developers.

With the exception of zero and one, never hard-code a numeric value; always declare
a constant instead.

Use the const directive only on natural constants such as the number of days of the
week.

Avoid using const on read-only variables. For that, use the readonly directive.

public class MyClass
{

public const int DayslnWeek = 7;
public readonly int Number;
public MyClass(int someValue)

{

}
}

Assert every assumption. On average, every fifth line is an assertion.
using System.Diagnostics;

Number = someValue;

object GetObject()
{---}

object someObject = GetObject();
Debug.Assert(someObject = null);

Every line of code should be walked through in a “white box” testing manner.
Catch only exceptions for which you have explicit handling.

-8-

©2008 IDesign Inc. All rights reserved

www.idesign.net January 2008

17.

18.
19.
20.

21.
22.
23.
24,
25.

26.

217.

28.

29.
30.

In a catch statement that throws an exception, always throw the original exception
(or another exception constructed from the original exception) to maintain the stack
location of the original error:

catch(Exception exception)

MessageBox . Show(exception.Message) ;
throw;

}

Avoid error codes as method return values.

Avoid defining custom exception classes.

When defining custom exceptions:

a) Derive the custom exception from Exception.

b) Provide custom serialization.

Avoid multiple Main () methods in a single assembly.

Make only the most necessary types public, mark others as internal.
Avoid friend assemblies, as they increase inter-assembly coupling.
Avoid code that relies on an assembly running from a particular location.

Minimize code in application assemblies (EXE client assemblies). Use class libraries
instead to contain business logic.

Avoid providing explicit values for enums unless they are integer powers of 2:

//Correct
public enum Color

Red,Green,Blue
¥
//Avoid
public enum Color
{
Red
Green
Blue

1,

2
3
}

Avoid specifying a type for an enum.

//Avoid
public enum Color : long

Red,Green,Blue

}

Always use a curly brace scope in an 1if statement, even if it conditions a single
statement.

Avoid using the ternary conditional operator.

Avoid explicit code exclusion of method calls (#1if..4#endi£). Use conditional
methods instead:

[Conditional ("MySpecialCondition")]
public void MyMethod()

b

-9-

©2008 IDesign Inc. All rights reserved

www.idesign.net

31.

32.
33.
34.

35.
36.

37.
38.

Avoid function calls in Boolean conditional statements. Assign into local variables
and check on them.

bool IsEverythingOKQ

{---}
//Avoid:

if(I1sEverythingOK())

/}éérrect:

bool ok = IsEverythingOKQ);

if(ok)

{---}

Always use zero-based arrays.

With indexed collection, use zero-based indexes

Always explicitly initialize an array of reference types using a for loop.

public class MyClass
G

const int ArraySize = 100;
MyClass[] array = new MyClass[ArraySize];
for(int index = 0; index < array.Length; index++)

array[index] = new MyClass();

Do not provide public or protected member variables. Use properties instead.

Avoid explicit properties that do nothing except access a member variable. Use
automatic properties instead:

//Avoid:

class MyClass

{

int m_Number;

public int Number

{
get

{
}
set

{
}

return m_Number;

m_Number = value;

}

//Correct:
class MyClass

{

public int Number

{
}

get;set;

}

Avoid using the new inheritance qualifier. Use override instead.
Always mark public and protected methods as virtual in a non-sealed class.

-10 -

©2008 IDesign Inc. All rights reserved

January 2008

www.idesign.net January 2008

39. Never use unsafe code, except when using interop.

40. Avoid explicit casting. Use the as operator to defensively cast to a type.

Dog dog = new GermanShepherd();

GermanShepherd shepherd = dog as GermanShepherd;
if(shepherd != null)

{---3

41. Always check a delegate for nul1 before invoking it.

42. Do not provide public event member variables. Use event accessors instead.

public class MyPublisher

{
MyDelegate m_SomeEvent;

public event MyDelegate SomeEvent

{
add

{
}

remove

{

}
}

m_SomeEvent += value;

m_SomeEvent -= value;

}

43. Avoid defining event-handling delegates. Use EventHandler<T> Or
GenericEventHandler instead. GenericEventHandler is defined in
Chapter 6 of Programming .NET Components 2" Edition.

44, Avoid raising events explicitly. Use EventsHelper to publish events defensively.
EventsHelper is presented in Chapter 6-8 of Programming .NET Components
2" Edition.

45. Always use interfaces. See Chapters 1 and 3 in Programming .NET Components 2"
Edition.

46. Classes and interfaces should have at least 2:1 ratio of methods to properties.

47. Avoid interfaces with one member.

48. Strive to have three to five members per interface.

49. Do not have more than 20 members per interface. Twelve is probably the practical
limit.

50. Avoid events as interface members.

51. When using abstract classes, offer an interface as well.

52. Expose interfaces on class hierarchies.

53. Prefer using explicit interface implementation.

-11-

©2008 IDesign Inc. All rights reserved

www.idesign.net January 2008

54.

55.
56.

57.

58.
59.

60.
61.
62.
63.
64.

Never assume a type supports an interface. Defensively query for that interface.

SomeType objl;
IMyInterface obj2;

/* Some code to initialize objl, then: */
obj2 = obj1 as IMylnterface;
if(obj2 = null)

obj2.Method1();
}

else

//Handle error in expected interface

}
Never hardcode strings that will be presented to end users. Use resources instead.

Never hardcode strings that might change based on deployment such as connection
strings.
Use String.Empty instead of " ":

//Avoid
string name = ""';

//Correct
string name = String.Empty;

When building a long string, use StringBuilder, not string.

Avoid providing methods on structures.

a) Parameterized constructors are encouraged.

b) Can overload operators.

Always provide a static constructor when providing static member variables.
Do not use late-binding invocation when early-binding is possible.

Use application logging and tracing.

Never use goto unless in a switch statement fall-through.

Always have a default case in a switch statement that asserts.

int number = SomeMethod();
switch(nhumber)
{
case 1:
Trace. WriteLine(''Case 1:');
break;
case 2:
Trace WriteLine("'Case 2:');
break;
default:
Debug.Assert(false);
break;

-12 -

©2008 IDesign Inc. All rights reserved

www.idesign.net

65.

66.

67.
68.
69.

70.

Do not use the this reference unless invoking another constructor from within a
constructor.

//Example of proper use of “this’
public class MyClass

{
public MyClass(string message)
O
public MyClass() : this("Hello™)
Y O

Do not use the base word to access base class members unless you wish to resolve
a conflict with a subclasses member of the same name or when invoking a base class
constructor.

//Example of proper use of “base’
public class Dog

public Dog(string name)

G
virtual public void Bark(int howLong)
h

public class GermanShepherd : Dog

public GermanShepherd(string name): base(hame)

s

override public void Bark(int howLong)

base . Bark(howLong) ;

+
}

Do not use GC. AddMemoryPressure ().
Do not rely on HandleCollector.

Implement Dispose () and Finalize () methods based on the template in
Chapter 4 of Programming .NET Components 2" Edition.

Always run code unchecked by default (for the sake of performance), but explicitly
in checked mode for overflow- or underflow-prone operations:
int CalcPower(int number,int power)

{

int result = 1;
for(int count = 1;count <= power;count++)

checked

{
}
+

return result;

result *= number;

-13-

©2008 IDesign Inc. All rights reserved

January 2008

www.idesign.net

71.

72.

73.
74.
75.

76.

Avoid casting to and from System.Object in code that uses generics. Use
constraints or the as operator instead:

class SomeClass

O
//Avoid:

class MyClass<T>
void SomeMethod(T t)

object temp = t;
SomeClass obj = (SomeClass)temp;

}

//Correct:
class MyClass<T> where T : SomeClass

{
void SomeMethod(T t)

SomeClass obj = t;

}
}

Do not define constraints in generic interfaces. Interface-level constraints can often
be replaced by strong-typing.

public class Customer

{---}
//Avoid:

public interface IList<T> where T : Customer

{---}
//Correct:
public interface ICustomerList : IList<Customer>

{---}
Do not define method-specific constraints in interfaces.
Do not define constraints in delegates.

If a class or a method offers both generic and non generic flavors, always prefer
using the generics flavor.

When implementing a generic interface that derives from an equivalent non-generic
interface (such as TEnumerable<Ts>), use explicit interface implementation on all

methods, and implement the non-generic methods by delegating to the generic ones:
class MyCollection<T> : IEnumerable<T>

{

IEnumerator<T> IEnumerable<T>.GetEnumerator()

{---}

IEnumerator 1Enumerable.GetEnumerator()

IEnumerable<T> enumerable = this;
return enumerable.GetEnumerator();

}
}

-14-

©2008 IDesign Inc. All rights reserved

January 2008

www.idesign.net January 2008

3 Project Settings and Project Structure

1. For Target Framework, always select the earliest target framework required for your
solution, unlike the default which will give you the latest:

Application
Build

Build Events

Debug

& Windows Applicati
Resources indows Application Ed

Services ’—

Settings
Reference Paths
Signing

Security

Publish [Drefault lcon)) ’— =
Embed manifest with default zettings r

{ ’_

2. Always build your project with warning level 4

yApp

Application

All Configurations r Active [Any CPU) r

Build Events
Debug
Seltings
Resouices
Reference Paths
Signing

Security

Fublish

Code Analysis

-15-

©2008 IDesign Inc. All rights reserved

www.idesign.net

3.

10.

11.
12.

Treat warnings as errors in the Release build (note that this is not the default of

Visual Studio). Although it is optional, this standard recommends treating warnings

as errors in Debug builds as well.

yApD| - X

Applicati
[ppication Configuration: IAI\ Configurations j Platforrm: IActive [&nw CPLU] j

Build

General

Buld Events Conditional compilation symbols: |

Debug ¥ Define DEBUG canstant

¥ Define TRACE canstart
Settings

Platform target: IAny CRU hd
Resaurces ™ Allow unsafe code
Reference Paths 7 Optimize code
Signing Enors and wamings

whamming level: |4 ha
Security

Suppress warnings: I
Publish

Tieat warhings 3 emors

Code Analysis More
\ " Specific wamings: I
Output
Output path: I Browse...

I~ ®ML documentation fle: [
I Fegisten for COH interon

Generate seralization assembly: I'A‘”tD j'
Advanced,

Avoid suppressing specific compiler warnings.

Always explicitly state your supported runtime versions in the application
configuration file.

<?xml version=""1.0"?>
<configuration>
<startup>
<supportedRuntime version="v2.0.50727.0"/>
<supportedRuntime version="v1.1.4322_.0"/>
</startup>
</configuration>

Avoid explicit custom version redirection and binding to CLR assemblies.

Avoid explicit preprocessor definitions (#def ine). Use the project settings for
defining conditional compilation constants.

Do not put any logic inside AssemblyInfo.cs.
Do not put any assembly attributes in any file besides Assemblylinfo.cs.

Populate all fields in Assemblyinfo.cs such as company name, description, and
copyright notice.

All assembly references in the same solution should use relative paths.
Disallow cyclic references between assemblies.

-16 -

©2008 IDesign Inc. All rights reserved

January 2008

www.idesign.net January 2008

13. Avoid multi-module assemblies.

14. Avoid tampering with exception handling using the Exception window
(Debug|Exceptions).

15. Strive to use uniform version numbers on all assemblies and clients in the same
logical application (typically a solution). Use the Solutioninfo.cs technique from
Chapter 5 of Programming .NET Components 2" Edition to automate.

Add Existing]ltemiltlss ERET Solution Explorer - Solution It... B
Look jri I[:l LinkedFilesDemo j & L ~ Togs~ =
. [ClaseLirany? =
% ga:;:tﬁrawz @ Solution "MyApp' [3 projects]
[*] Solutionlrio.cs = Solution terns
e b] Solutionlnfo.cs
My Prejects ¥ [ClassLibran?
= - :E MuyClaszLibramn
Desklap = . Properties
PN -] Aszemblylnfo.cs
%] ™ g Solutionlnfo.cs
IRei(Es [+ [« References
& Fie nome: | =l 0 H """ cﬁ MyLlass].cs
i | Lo [1] - (28 MyClient
Places Files ol typs [Tt Files [~co) | Open . I__—_l i Properties
| E:Zii"h" | e o] Assemblyinfo.cs

- (4 Resources resx
N Settings. zettings
A éﬁ Solutionlnfo.cs
[+ [+2] References
B [ZE] MyClient.cs
-----] Program.cs

16. Link all solution-wide information to a global shared Solutioninfo.cs file.
17. Name your application configuration file as App.config, and include it in the project.

18. Modify Visual Studio 2008 default project structure to comply with your project
standard layout, and apply uniform structure for project folders and files.

19. A Release build should contain debug symbols.

Advanced Build Settings BE
General
Language Yerzion: Idefault j
Internal Compiler Emar Feparting: Iprompt j

[T Check for arithmetic overflowunderlow

[™ Do not reference mecorib.di

Cutput
Debug Infa: hd
Eile Alignment: {4035 =l
DLL Baze Addrezs: IEI:-:EID4EIDDEIEI

ok | Cancel |

-17 -

©2008 IDesign Inc. All rights reserved

www.idesign.net January 2008

20. Always sign your assemblies, including the client applications.
21. Use password-protected keys.

Create Strong Hame Key EE3

-18 -

©2008 IDesign Inc. All rights reserved

www.idesign.net January 2008

4 Framework Specific Guidelines

4.1 Data Access

1. Always use type-safe data sets or data tables. Avoid raw ADO.NET.

2. Always use transactions when accessing a database.
a) Always use WCF, Enterprise Services or System.Transactions transactions.
b) Do not use ADO.NET transactions by enlisting the database explicitly.

3. Always use transaction isolation level set to Serializable. Management decision is
required to use anything else.

4. Do not use the Data Source window to drop connections on windows forms,
ASP.NET forms or web services. Doing so couples the presentation tier to the data
tier.

Avoid SQL Server authentication. Use Windows authentication instead.

Run components accessing SQL Server under separate identity from that of the
calling client.

7. Always wrap your stored procedures in a high level, type safe class. Only that class
invokes the stored procedures. Let Visual Studio 2008 type-safe data adapters
automate as much of that as possible.

8. Avoid putting any logic inside a stored procedure. If you have anything more
complex than simple switching logic to vary your query based on the parameter
values, you should consider putting that logic in the business logic of the consuming
code.

4.2 ASP.NET and Web Services

1. Awvoid putting code in ASPX files of ASP.NET. All code should be in the code-
beside partial class.

2. Code in code beside partial class of ASP.NET should call other components rather
than contain direct business logic.

Always check a session variable for nul1 before accessing it.

In transactional pages or web services, always store session in SQL server.
Avoid setting the Auto-Postback property of server controls in ASP.NET to True.
Turn on Smart Navigation for ASP.NET pages.

Strive to provide interfaces for web services. See Appendix A of Programming .NET
Components 2" Edition.

8. Always provide a namespace and service description for web services.

N o oM~ w

9. Always provide a description for web methods.
10. When adding a web service reference, provide a meaningful name for the location.

-19 -

©2008 IDesign Inc. All rights reserved

www.idesign.net

11.

12.

In both ASP.NET pages and web services, wrap a session variable in a local
property. Only that property is allowed to access the session variable, and the rest of
the code uses the property, not the session variable.

public class Calculator : WebService

.
int Memory

{
get

{
int memory = 0;
object state = Session['Memory'];
if(state = null)

{
memory = (int)state;

return memory;

}

set

Session[""Memory'"] = value;

}

}
[WebMethod(EnableSession=true)]
public void MemoryReset()

{
}

Memory = O;

}

Always modify a client-side web service wrapper class to support cookies, since you
have no way of knowing whether the service uses Session state or not.

public class Calculator : SoapHttpClientProtocol

{
public Calculator()

CookieContainer = new System.Net.CookieContainer();
url = ___;
}

4.3 Multithreading

1.

Use Synchronization Domains. See Chapter 8 in Programming .NET Components
2" Edition. Avoid manual synchronization because that often leads to deadlocks and
race conditions.

Never call outside your synchronization domain.

Manage asynchronous call completion on a callback method. Do not wait, poll, or
block for completion.

Always name your threads. The name is traced in the debugger Threads window,
making debug sessions more productive.

Thread currentThread = Thread.CurrentThread;
string threadName = ""Main Ul Thread";
currentThread.Name = threadName;

-20 -

©2008 IDesign Inc. All rights reserved

January 2008

www.idesign.net January 2008

10.

11.

12.
13.
14,

15.
16.

17.

18.

19.

20.

21.

Do not call Suspend () or Resume () on a thread.
Do not call Thread.Sleep (), except in the following conditions:

a) Thread.Sleep (0) isan acceptable optimization technique to force a context
switch.

b) Thread.Sleep () isacceptable in testing or simulation code.
Do not call Thread.SpinWait ().

Do not call Thread.Abort () to terminate threads. Use a synchronization object
instead to signal the thread to terminate. See Chapter 8 in Programming .NET
Components 2™ Edition.

Avoid explicitly setting thread priority to control execution. You can set thread
priority based on task semantic, such as below normal
(ThreadPriority.BelowNormal) for a screen saver.

Do not read the value of the ThreadState property. Use Thread.IsAlive to
determine whether the thread is dead or alive.

Do not rely on setting the thread type to background thread for application shutdown.
Use a watchdog or other monitoring entity to deterministically kill threads.

Do not use thread local storage unless thread affinity is guaranteed.

Do not call Thread.MemoryBarrier ().

Never call Thread.Join () without checking that you are not joining your own
thread.

void WaitForThreadToDie(Thread thread)

Debug.Assert(Thread.CurrentThread.ManagedThreadld != thread.ManagedThreadld);
thread.Join();

}

Always use the 1ock () statement rather than explicit Monitor manipulation.
Always encapsulate the 1ock () statement inside the object it protects.

public class MyClass

public void DoSomething(Q)

lock(this)
{---}
}
}
You can use synchronized methods instead of writing the Lock () statement
yourself.

Avoid fragmented locking (see Chapter 8 of Programming .NET Components 2"
Edition).

Avoid using a Moni tor to wait or pulse objects. Use manual or auto-reset events
instead.

Do not use volatile variables. Lock your object or fields instead to guarantee
deterministic and thread-safe access. Do not use Thread.vVolatileRead (),
Thread.VolatileWrite (), orthe volatile modifier.

Avoid increasing the maximum number of threads in the thread pool.

-21-

©2008 IDesign Inc. All rights reserved

www.idesign.net

22.

Never stack 1ock statements because that does not provide atomic locking. Use
WaitHandle.WaitAll () instead.

MyClass objl = new MyClass();
MyClass obj2 = new MyClass();
MyClass obj3 = new MyClass();
//Do not stack lock statements
lock(objl1)

lock(obj2)

lock(obj3)

{

obj1.DoSomething(Q);

obj2.DoSomething();

obj3.DoSomething();
s

4.4 Serialization

1. Prefer the binary formatter.

2. Mark serialization event handling methods as private.

3. Usethe generic IGenericFormatter interface. See Chapter 9 of Programming
NET Components 2™ Edition.

Mark non-sealed classes as serializable.

5. When implementing IDeserializationCallback on a non-sealed class,
make sure to do so in a way that allowed subclasses to call the base class
implementation of OnDeserialization ().See Chapter 3 of Programming .NET
Components 2" Edition.

Always mark un-serializable member variables as non serializable.
Always mark delegates on a serialized class as non-serializable fields:
[Serializable]
public class MyClass

[field:NonSerialized]

public event EventHandler MyEvent;
}

4.5 Remoting

1. Prefer administrative configuration to programmatic configuration.

2. Always implement IDisposable on single call objects.

3. Always prefer a TCP channel and a binary format when using remoting, unless a
firewall is present.

4. Always provide anull lease for a singleton object.

public class MySingleton : MarshalByRefObject
{

public override object InitializeLifetimeService()

{
}

return null;

}

-22 -

©2008 IDesign Inc. All rights reserved

January 2008

www.idesign.net January 2008

12.

13.
14,

Always provide a sponsor for a client activated object. The sponsor should return the
initial lease time.

Always unregister the sponsor on client application shutdown.
Always put remote objects in class libraries.

Avoid using SoapSuds.

Avoid hosting in I1S.

. Avoid using uni-directional channels.
. Always load a remoting configuration file in Main () even if the file is empty, and

the application does not use remoting.
static void Main(Q)

RemotingConfiguration.Configure(*"MyApp.exe.config'™);
/* Rest of Main() */

}

Avoid using Activator.GetObject () and
Activator.CreateInstance () for remote objects activation. Use new
instead.

Always register port 0 on the client side, to allow callbacks.
Always elevate type filtering to full on both client and host to allow callbacks.

4.6 Security

1.

2.
3.

Always demand your own strong name on assemblies and components that are
private to the application, but are public (so that only you can use them).

public class PublicKeys

public const string MyCompany = ''1234567894800000940000000602000000240000"
""52534131000400000100010007D1FA57C4AEDOFO™
"'A32E84AAOFAEFDODE9SESFDEAECBF87FB03766C83
"*4C99921EB23BE79ADID5DCC1DDYAD23613210290™
*'0B723CF980957FC4E177108FC607774F29E8320E™"
""O2EAOSECE4E821COASEFESF1645C4C0CO3C1AB99™
"'285D622CAA652C1DFAD63D745D6F2DESF1 7ESEAF "+
""OFC4963D261C8A12436518206DC093344D5AD293" ;

f A AFAF A

+

}

[StrongNameldentityPermission(SecurityAction.LinkDemand,
PublicKkey = PublicKeys.MyCompany)]
public class MyClass

{---}
Apply encryption and security protection on application configuration files.

When importing an interop method, assert unmanaged code permission, and demand
appropriate permission instead.

[DHImport(*'user32" ,EntryPoint=""MessageBoxA')]
private static extern int Show(IntPtr handle,string text,string caption,
int msgType);
[SecurityPermission(SecurityAction.Assert,UnmanagedCode = true)]
[UlPermission(SecurityAction.Demand,
Window = UlPermissionWindow.SafeTopLevelWindows)

-23-

©2008 IDesign Inc. All rights reserved

www.idesign.net January 2008

10.

public static void Show(string text,string caption)

Show(IntPtr._Zero, text,caption,0);
T

Do not suppress unmanaged code access via the
SuppressUnmanagedCodeSecurity attribute

Do not use the /unsafe switch of TIbImp.exe. Wrap the RCW in managed code so
that you could assert and demand permissions declaratively on the wrapper.

On server machines, deploy a code access security policy that grants only Microsoft,
ECMA, and self (identified by a strong name) full trust. Code originating from
anywhere else is implicitly granted nothing.

On client machines, deploy a security policy which grants client application only the
permissions to execute, to call back the server and to potentially display user
interface. When not using ClickOnce, client application should be identified by a
strong name in the code groups.

To counter a luring attack, always refuse at the assembly level all permissions not
required to perform the task at hand.

[assembly:UlPermission(SecurityAction.RequestRefuse,
Window=UlPermissionWindow.Al IWindows)]

Always set the principal policy in every Main () method to Windows
public class MyClass

{
static void Main(Q)

{

AppDomain currentDomain = Thread.GetDomain();
currentDomain.SetPrincipalPolicy(PrincipalPolicy.WindowsPrincipal);

//other methods

}

Never assert a permission without demanding a different permission in its place. See
Chapter 12 in Programming .NET Components 2" Edition.

4.7 System.Transactions

1.
2.
3.

Always dispose of a TransactionScope object.
Inside a transaction scope, do not put any code after the call to Complete ().

When setting the ambient transaction, always save the old ambient transaction and
restore it when you are done.

In Release builds, never set the transaction timeout to zero (infinite timeout).

When cloning a transaction, always use
DependentCloneOption.BlockCommitUntilComplete.

Create a new dependent clone for each worker thread. Never pass the same
dependent clone to multiple threads.

Do not pass a transaction clone to the TransactionScope's constructor.

Always catch and discard exceptions thrown by a transaction scope that is set to
TransactionScopeOption.Suppress.

=24 -

©2008 IDesign Inc. All rights reserved

www.idesign.net

4.8 Enterprise Services

1.

Do not catch exceptions in a transactional method. Use the AutoComplete
attribute. See Chapter 4 in COM and .NET Component Services.

Do not call SetComplete (), SetAbort (), and the like. Use the
AutoComplete attribute.

[Transaction]
public class MyComponent : ServicedComponent

[AutoComplete]
public void MyMethod(long objectldentifier)

{---}
}

Always override CanBePooled and return true (unless you have a good reason
not to return to pool)

public class MyComponent : ServicedComponent

protected override bool CanBePooled()
{

}

return true;

}

Always call Dispose () explicitly on a pooled objects unless the component is
configured to use JITA as well.

Never call Dispose () when the component uses JITA.
Always set authorization level to application and component.
Set authentication level to privacy on all applications.

[assembly: ApplicationActivation(ActivationOption.Server)]
[assembly: ApplicationAccessControl (
true, //Authorization

AccessChecksLevel=AccessChecksLevelOption._ApplicationComponent,

Authentication=AuthenticationOption.Privacy,
ImpersonationLevel=ImpersonationLevelOption. ldentify)]

Set impersonation level on client assemblies to Tdentity.

Always set ComponentAccessControl attribute on serviced components to
true (the defaultis true)

[ComponentAccessControl]
public class MyComponent : ServicedComponent

{---}

10. Always add to the Marshaler role the Everyone user

| [assembly: SecurityRole("'Marshaler",SetEveryoneAccess = true)]

11. Apply secureMethod attribute to all classes requiring authentication.

[SecureMethod]
public class MyComponent : ServicedComponent

{---}

-25-

©2008 IDesign Inc. All rights reserved

January 2008

www.idesign.net January 2008

5 Resources

5.1 Programming .NET Components 2" Edition
By Juval Lowy, O'Reilly 2005 ISBN: 0-596-10207-0

Hiewg' boo Bavidcd Meferdaiivralater,
Extonsibile ctrred Retiselde NET Apglicertions

Programming

B
Components

O'REILLY" prursf £y

5.3 The IDesign Serviceware Downloads

IDesign serviceware download is a set of original techniques, tools utilities and even
breakthroughs developed by the 1Design architects. The utilities are largely productivity-
enhancing tools, or they compensate for some oversight in the design of .NET or WCF.
The demos are also used during our Master Classes to demystify technical points, as lab
exercises or to answer questions. The classes' attendees find the demos useful not only in
class but after it. The demos serve as a starting point for new projects and as a rich
reference and samples source.

5.4 The Architect’s Master Class

The Architect’s Master Class is a five days training, and is the ultimate resource for the
professional architect. The class is conducted in the style of a Master Class, where a
Master architect shares his experience and perspective, and interacts with the students.
The class has three parts, on process, technology and SOA, and the IDesign method.
While the class shows how to design modern systems, it sets the focus on the ‘why’ and
the rationale behind particular design decisions, often shedding light on poorly
understood aspects. You will see relevant design guidelines, best practices, and pitfalls,
and the crucial process skill required of today’s architects. Don’t miss on this unique
opportunity to learn and improve your architecture skills with 1Design, and share our
passion for architecture and software engineering.

More at www.idesign.net

-26 -

©2008 IDesign Inc. All rights reserved

